Sie sind hier

Anwendungen zum LC-Meter

Übersicht

Auf dieser Seite möchte ich zeigen, daß das LC-Meter durchaus zu etwas nütze ist. Ich werde von Zeit zu Zeit praktsiche Meßbeispiele zufügen. Das erste Beispiel beschäftigt sich mit der Bestimmung des AL-Wertes von verschiedenen Kernmaterialien. Im zweiten Beispiel wurde der Kopplungsfaktor eines auf einem Ringkern gewickelten Transformators bestimmt.

1. Beispiel: Der AL-Wert einiger Ferritkerne

Der AL-Wert von Kernen (Ringkerne, M-Kerne, E-Kerne, etc.) dient dazu die Anzahl der Windungen zu berechnen, die man auf einen Kern wickeln muß, um eine gewünschte Induktivität zu erhalten. Die Induktivität L errechnet sich gemäß:

Die Meßvorschrift könnte also sein, eine bestimmte Anzahl von Windungen auf den Kern aufzubringen, die Induktivität zu messen und dann die Meßwerte in die nach N aufglöste Formel einzusetzten:

Ich bin einen etwas anderen Weg gegangen. Ich habe zu den Kernen, deren AL-Wert ich bestimmen wollte, die Induktivität zu jeweils einer, zwei, drei, ..., acht Windungen bestimmt und die Werte notiert:

NL1L2L3
1-3,2 μH3,0 μH
2-8,8 μH8,1 μH
318 μH17,3 μH19,9 μH
428 μH28,4 μH26,0 μH
540 μH42,6 μH38,6 μH
654 μH59,8 μH53,6 μH
772 μH80,3 μH71,2 μH
892 μH104 μH91,5 μH

Die drei Spalten L1, L2 und L3 stehen für die gemessenen Induktivitäten eines Amidon Ringkerns FT114-77, eines Kerns der Größe EE25 und eines Kernes der Größe E30. Zum dritten Kern sind mir die Daten völlig unbekannt. Siehe folgende Bilder.

Die drei Kerne - Amidon FT114-77, EE25, E30 Die drei Kerne, andere Perspektive - Amidon FT114-77, EE25, E30

Um aus den Meßreihen auf den AL-Wert zu kommen, ist es am bequemsten, die Formel an die Meßwerte anzufitten, wobei AL so lange variiert wird, bis die Summe der Fehlerquadrate minimal wird. Gnuplot [1] hat beispielsweise eine solche Funktion integriert. Das Ergebnis ist dann der AL-Wert inclusive seines Fehlers. Es hat sich als zweckmäßig herausgestellt, die Formal noch um einen Summanden L0 zu ergänzen, um konstante Induktivitäten des Meßaufbaus und der Zuleitungskabel zu berücksichtigen. Die Formel, die gefittet wird, ist also:

Das Fitergebnis ist in der folgenden Tabelle wiedergegeben:

KernAL (gemessen)AL (lt. Hersteller)L0
11,34 μH/Wdg2 ± 0,6%1,14 μH/Wdg2[2]6,2 μH ± 5%
21,59 μH/Wdg2 ± 0,5%1,90 μH/Wdg2[3]2,5 μH ± 11%
31,40 μH/Wdg2 ± 1%unbekannt2,9 μH ± 16%

Die Zuverlässigkeit der AL-Werte ist sehr gut, was vor allem bedeutet, daß die quadratische Abhängigkeit von der Windungszahl in der Realität hervorragend erfüllt ist. Anders dagegen die absoluten AL-Werte: Der gemessene Wert des Amidon-Kerns ist rund 18% größer als der Wert den der Herstellers [2] angibt. Bei Kern 2, dem EE25-Kern ist der gemessene Wert 16% kleiner als der Wert nach Herstellerangaben [3]. Allerdings gibt in diesem Fall der Hersteller die Toleranz seines AL-Werte mit 25% an. Damit liegen die AL-Werte der ersten beiden Kerne innerhalb der Toleranzgrenzen.

Zum dritten Kern (E30) kann man weiter nichts sagen, weil es keinen Referenzwert gibt. Der wahre AL-Wert dürfte zwischen 1,12 und 1,87 μH/Wdg2 liegen, wenn man 25% Toleranz zugrunde legt. Wahrscheinlich sind die Kerne EE25 und E30 daher nicht aus dem selben Material - zumal der größere E30 einen kleineren AL-Wert hat, als der kleinere EE25-Kern

2. Beispiel: Bestimmung der Permeabilität μr

Die Induktivität einer Zylinderspule der Länge l und des Wicklungsquerschnitts A mit N Windungen auf einem Kermaterial mit der relativen Permeabilität μr läßt sich gemäß

berechnen, wobei μ0 = 4 π 10-7 H/m (ca. 1.26x10-6 H/m) ist. Diese Formel läßt sich leicht nach μr auflösen:

Die Größe le steht hier nun für eine effektive Länge der Spule oder - genauer - für die mittlere Länge einer magnetischen Feldlinien, die die Spule durchsetzt. Damit erlangt die Formel prinzipiell Gülrigkeit für beliebige Kernformen. Bei handelsüblichen Kernformen (vor allem bei Ringkerne, E-Kernen und anderen Kernen mit einem geschlossenen magnetischen Kreis) werden die geometrischen Größen le und A im Datenblatt mit angegeben (magnetische Formkenngrößen).

Der in der Formel auftretende Quotient aus L und N2 kann außerdem durch AL ersetzt werden. Somit können die im vorherigen Beispiel bestimmten AL-Werte hier direkt weiterverwendet werden, um auch die relative Permeabilität zu erhalten. Das Beispiel wird sich also wieder auf die drei oben erwähnten Kerne (Amidon FT114-77, ein EE25 und ein E30) beziehen. Die folgende Tabelle zeigt das Ergebnis der einfachen Rechnung.

Kern A le AL (gemessen) AL (laut Hersteller) μr (gemessen) μr (laut Hersteller)
10,375 cm27,42 cm1,34 μH/Wdg21,14 μH/Wdg221102050 [2]
20,525 cm25,75 cm1,59 μH/Wdg21,90 μH/Wdg21390ca. 2000 [4]
30,60 cm26,7 cm1,40 μH/Wdg21240

Die Permeabilität des Amidon-Kernes wurde recht gut bestätigt. Die des EE25 Kernes weicht doch erheblich vom Wert ab, den das Material erwarten läßt. Interessanterweise hat der Kern mit dem umbekannten Material eine Permeabilität, die erstaunlich dicht am Meßwert des EE25-Kernes liegt. In Anbetracht der Abweichungen zu den Herstellerangaben ist diese Gleichheit natürlich mit Vorsicht zu interpretieren.

3. Beispiel: Der Kopplungsfaktor zweier Wicklungen auf einem Ferrit-Ringkern

Auf einen Amidon Ringkern FT114-77 [2] wurden als Sekundärwicklung etwas über 90 Windungen eines 0,15 mm CuLL-Drahtes - Windung an Windung - aufgebracht. Die Wicklung belegt damit etwa die Hälfte des Kerns. Mittig auf der freien Hälfte wurden 8 Windungen - ebenfalls Windung an Windung - eines 0,8 mm CuL-Drahtes als Primärwicklung aufgebracht. Ein leere und ein bewickelter Kern ist im folgenden Bild dargestellt.

Ein leerer und ein bewickelter Amidon FT114-77-Kern

Der Versuch, diesen Transformator als Durchflußwandler zu benutzen, schlug allerdings fehl, weil es im Ausschaltmoment auf der Primärseite sehr energiereiche Spannungsspitzen gab, die das angeschlossene Snubber-Netzwerk zu stark belasteten. Dieser Effekt ist ein deutliches Indiz für eine zu hohe Streuinduktivität. Das heißt, es steht zu befürchten, daß der Kopplungsfaktor nicht nahe genug bei 1 ist.

Wie sich der Kopplungfaktor k messen läßt, ist hier erklärt. Hier nochmal zusammenfassend die Formel:

Gemessen werden jeweils die einzelnen Induktivitäten der Wicklungen auf dem Kern (L1, L2) sowie die resultierende Induktivität, wenn man beide Wicklungen in Reihe schaltet (Lx) und wenn man eine Wicklung der Reihenschaltung umpolt (Ly). Hier die Meßwerte:

Messung vonMesswert
L1110 μH
L213,8 mH
Lx16,3 mH
Ly11,6 mH

Eingesetzt in die Formel ergibt sich ein Kopplungsfaktor von k=0,95, was deutlich kleiner als 1 ist. Damit hat sich der Verdacht erhärtet, daß zumindest diese Art des Bewickelns eines Ferrit-Ringkernes eher ungeeignet ist.

4. Beispiel: tbd

Wird fortgesetzt ...

Referenzen und Links

Undefined